Tag: software licensing solution

AutoCAD plugin software licensing

AutoCAD® is a powerful computer-aided design (CAD) software. It’s also quite extensible since anyone can easily create plug-ins. In this post, we briefly summarise several tips on how to securely license and sell your AutoCAD plug-ins.

Creating the plugin

If you are about to create a new AutoCAD plug-in, we would recommend to review the following tutorial provided by Autodesk.

Adding software licensing

Assuming you have Visual Studio 2017 open, you can add a simple key verification mechanism as described below:

  1. Right click on your project in the Solution Explorer and click on Manage NuGet Packages.
  2. Search for Cryptolens.Licensing and install it.
  3. Add the code-snippet form this page in the code where the plugin loads for the first time.

Selling the plug-in

One way to sell AutoCAD plug-ins is by publishing them in the Autodesk App Store, where a basic licensing mechanism is already provided. The problem with this approach is that the licensing models available are quite limited (eg. you can only charge your customers once for the plug-in and they will be able to use it in perpetuity). For instance, selling your plug-in as a service (subscription model) is not supported.

A better approach is to still publish your plug-in in the Autodesk App Store and set it to be a free app. You can then ask your customers to get a separate license key to be able to unlock all features.

You can read more about various ways of selling your software in our help pages. I would also recommend to check out the available licensing models.

If you have any questions, please feel free to reach out!


License server for software licensing

One of the problems experienced by software vendors when selling to large customers is that some of their machines that will be running the software do not have direct internet access.

Although it is still possible to use offline activation, having an active connection to Cryptolens makes things much easier for both you as the software vendor and your customers.

To solve this, we can use a license server that will re-route all the license verification requests from the computers in the network to Cryptolens, as shown below:

If you have already implemented key verification in your application, the license server can be set up quite quickly in two steps:

  1. Install the license server as described here.
  2. In the Key.Activate method, add LicenseServerUrl parameter and set it to point to the license server (the IP and port of are shown in step 1).

Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.

Overdraft software licensing

Several months ago, we introduced support for floating licenses, which, in simple terms, is a way to permit a certain number of concurrent end users at a time.

Overdraft license is a way to allow your users to temporarily exceed the upper bound of the number of concurrent licenses to take into account for potential peak usages. Once this occurs, a special event is going to be registered so that you can increase the limit in the next billing cycle.

In .NET, this can be implemented as follows (below, we allow the users to exceed the upper bound by one more concurrent license):

var auth = "{access token with permission to access the activate method}";
var result = Key.Activate(token: auth, parameters: new ActivateModel()
{
    Key = licenseKey,
    ProductId = 3349,
    Sign = true,
    MachineCode = Helpers.GetMachineCode(),
    FloatingTimeInterval = 100, // needed for floating licenses
    MaxOverdraft = 1            // needed to allow overdraft
});

if(Helpers.IsOnRightMachine(res2.LicenseKey, isFloatingLicense: true, allowOverdraft: true))
{
    // everything OK!
}

You can read more about this on our help pages.


Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.

Recurring Payments with Stripe combined with Software Licensing

A popular licensing model amongst software vendors is subscription-based licensing. It is generally seen as a smaller risk for the customer than traditional one-time payments (eg. which normally require a large commitment), but at the same time it provides recurring revenues for the software vendor.

You can get started with recurring payments by visit our help pages.

Features

Recurring payments are implemented as a part of the customer portal. Thanks to this update, customers can not only manage their existing licenses but also subscribe for new ones.

Everything related to payments, plans and subscriptions is managed by Stripe, so if you’re already using Stripe, it’s quite easy to get started with the new recurring payments feature. If you do not have Stripe, it’s quite easy to get started. A tutorial can be found here.

In addition to recurring payments, the customer portal makes it possible to use user account authentication, described in the previous article.

Screenshots

Example when the customer has subscribed to a new plan:

The new license will show up on the home page of the customer:

Reviewing a license key and the subscription it is associated with:


Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.

Software licensing for PHP applications

We recently added support for key verification in PHP, available on GitHub. Below is the sample code that can be included into your application.

<?php
require_once('Cryptolens.php');

$activate = cryptolens_activate(
      // Access token
      'WyI0NjUiLCJBWTBGTlQwZm9WV0FyVnZzMEV1Mm9LOHJmRDZ1SjF0Vk52WTU0VzB2Il0='
      // Product Id
    , 3646
      // License Key
    , 'MPDWY-PQAOW-FKSCH-SGAAU'
      // Machine code
    , '289jf2afs3'
    );

// $activate is now a boolean indicating if the activation attempt was successful or not

?>

The repository contains all the necessary information to get the code to work (eg.. finding access tokens)


Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.

Usage-based (pay per use) software licensing in .NET

Many software vendors nowadays move away from one-time payments to other licensing models. One such example is the usage-based model. By doing so helps lowering the barrier of entry for new customers, as they no longer need to commit to the product long term, which is usually the case with one-time payments. If you already have a subscription model, supporting usage-based payments can help you to monetise a group of users who would otherwise not buy the product.

You can read the entire tutorial here.

Getting started

In Cryptolens, usage-based licensing can be implemented using data objects, aka custom variables. We can use these variables to record how often features are used and keep track of any usage credits that a customer has purchased. There are two ways of billing customers:

  • Upfront payment: customers need to purchase usage credits in advance.
  • Based on actual usage: customers pay for the actual usage in the end of the billing period.

Charging based on actual usage

If you choose to charge your customers based on actual usage, we can simply use the code below:

var auth = "Access token with AddDataObject, ListDataObject and IncrementIntValue permission. Please also set KeyLock value to '-1'";
var licenseKey = "LZKZU-MPJEW-TARNP-UHDBQ";

var result = Data.ListDataObjects(auth, new ListDataObjectsToKeyModel 
{
    Contains = "usagecount",
    Key = licenseKey,
    ProductId = 3349 
});

var obj = result.DataObjects.Get("usagecount");

if (obj == null)
{
    // make sure to create it in case it does not exist.
    Data.AddDataObject(auth, new AddDataObjectToKeyModel { Key = licenseKey, ProductId = 3349, Name = "usagecount", IntValue = 1 });

    if(res == null || res.Result == ResultType.Error)
    {
        Console.WriteLine("Could not create new data object. Terminate." + res.Message);
    }
}
else
{
    var res = obj.IncrementIntValue(auth, 1, licenseKey: new LicenseKey { Key = licenseKey, ProductId = 3349 });

    if (res == false) 
    {
        Console.WriteLine("We could not update the data object. Terminate.");
    }
}

Upfront payments

If you instead want to charge your users upfront, we need to create the data objects when creating the license. If you are using payment forms, we can set up two requests, one creating a new license and another creating a new data object (inspired by this tutorial), as the result from key creation will be “piped” into data object creation request. You can then have another payment form that allows users to refill their credits, in which case the custom field can be used.

You can use the code below to verify if the limit was reached inside your application:

var auth = "Access token with AddDataObject, ListDataObject and IncrementIntValue permission. Please also set KeyLock value to '-1'";
var licenseKey = "LZKZU-MPJEW-TARNP-UHDBQ";

var result = Data.ListDataObjects(auth, new ListDataObjectsToKeyModel { Contains = "usagecount", Key = licenseKey, ProductId = 3349 });
var obj = result.DataObjects.Get("usagecount");

var res = obj.DecrementIntValue(auth, decrementValue: 1, enableBound:true, lowerBound: 0, licenseKey: new LicenseKey { Key = licenseKey, ProductId = 3349 });

if (!res)
{
    Console.WriteLine("Could not decrement the data object. The limit was reached.");
}

Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.

Sending news and update notifications using Messaging API

The new Messaging API allows you to easily send notifications to some or all of your end users. For example, it can help you to notify customers running an older version of your application to upgrade as well as keep them updated about the latest news.

Getting Started

It’s quite simple to get started with the Messaging API. The dashboard is available here, which is where you can send the messages. In order receive them in your own app, you can use the GetMessages method. One thing to keep in mind are the two optional parameter, time and channel. These allow you to tell Cryptolens which messages you want to receive. Time is used as a reference when the last message was seen and channel is a way to group those messages. If these are not specified, all of the messages will be returned.

For example, let’s say you want to implement updates notifications. In that case, we can use the code below to ensure that only older versions of the software receive the message. The version itself is specified as a unix timestamp in the currentVersion parameter, which should be the time when you published the release.

var currentVersion = 1538610060;
var result = (GetMessagesResult)Message.GetMessages("token with GetMessages permission", new GetMessagesModel { Channel = "stable", Time = currentVersion } );

if(result == null || result.Result == ResultType.Error)
{
    // we could not check for updates
    Console.WriteLine("Sorry, we could not check for updates.");
}
else if (result.Messages.Count > 0)
{
    // there are some new messages, we pick the newest one 
    // (they are sorted in descending order)
    Console.WriteLine(result.Messages[0].Content);
}
else
{
    // No messages, so they have the latest version.
    Console.WriteLine("You have the latest version.");
}

Console.Read();

You can see the entire tutorial about updates notifications for more details. There is also about notifications.


Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.

Protecting Software with Obfuscation and Software Licensing

Software applications can be secured with two layers of protection. The first layer is software licensing, whose aim is to enforce a license model (eg. by restricting the number of machines where the application can run). The second layer is software obfuscation, where the end goal is to make it hard or impossible for the end users read and alter the source code. In this article, we will focus on obfuscation.

Types of obfuscations

There are two ways of making it harder for the adversary to read or alter the source code. We can either achieve it by altering the source in such a way that more time is necessary to understand how the code works and to make it harder to remove existing licensing logic (eg. for key verification). This is usually what is thought of as obfuscation. The second approach is to move critical code away from the client machine to your own servers and provide it as an API endpoint that your application will call.

Both methods have their pros and cons. In the case of code obfuscation, you can relative easily increase the difficultly of reverse engineering at the cost of that eventually the source code will be reversed engineered or licensing logic bypassed. With custom API endpoints, you always retain control of code execution (since it runs on your servers) and if everything is correctly implemented, it’s impossible to reverse engineer the code. This is at the cost of requiring active internet connection to your server and potentially some regulatory issues (since data has to be transferred to your servers).

Conventional obfuscators

There are many obfuscators out there, some that even are free of charge. For the .NET platform, you can either use Ofuscar or ConfuserEx. The idea behind all of them is to make the IL code (which C# and VB.NET compile to) harder to read for an adversary. They should be quite easy to use, so you can simply add the key verification logic anywhere in the software.

API endpoints

Creating an API endpoint for highly sensitive code is the best way to protect it against reverse engineering. Although it may sound as very cumbersome to set up and maintain, the good news is that most cloud providers today support some form of serverless computing. We will describe how this is achieved using Azure Functions, but it should be fairly similar to other cloud platforms. The reason why we chose the serverless model is because it abstracts most things away, allowing you to focus on expressing the actual method. Moreover, cloud providers tend to allow a “per request” model, meaning that you do not have to pay for the time when the application is idle.

Azure Functions demo

To create an Azure function, go to the Azure portal and create a new “Function App”. You can then select either “consumption plan” or “app service plan” (please see this for more details). Once it’s set up, create a new HTTP Trigger and change the run.csx as shown below. To get the license verification to work, we will need to add an additional file, function.proj (or project.json for older versions of the runtime), which we cover further down in the article.

run.csx
#r "Newtonsoft.Json"

using System.Net;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.Primitives;
using Newtonsoft.Json;

using SKM.V3;
using SKM.V3.Models;
using SKM.V3.Methods;

public static async Task Run(HttpRequest req, ILogger log)
{
    // this function will return 'Hello, <name>' if the correct license key is provided.

    // licensekey and machinecode stored as query string
    if(!KeyVerification(req.Query["licensekey"], req.Query["machinecode"])) 
    {
        return new BadRequestObjectResult("License key verification failed");        
    }
    
    string name = req.Query["name"];

    return name != null
        ? (ActionResult)new OkObjectResult($"Hello, {name}")
        : new BadRequestObjectResult("Please pass a name on the query string or in the request body");
}

public static bool KeyVerification(string licenseKey, string machineCode) {

    var RSAPubKey = "<RSA public key>";

    var auth = "<access token>";
    var result = Key.Activate(token: auth, parameters: new ActivateModel()
    {
        Key = licenseKey,
        ProductId = 3349,
        Sign = true,
        MachineCode = machineCode
    });

    if (result == null || result.Result == ResultType.Error ||
        !result.LicenseKey.HasValidSignature(RSAPubKey).IsValid())
    {
        // an error occurred or the key is invalid or it cannot be activated
        // (eg. the limit of activated devices was achieved)
        Console.WriteLine("The license does not work.");
        return false;
    }
    else
    {
        // everything went fine if we are here!
        Console.WriteLine("The license is valid!");
        return true;
    }
}
function.proj

In order to add support for license key verification, we need to add Cryptolens.Licensing. Depending on the version of function apps that you are using, you might either need to create a project.json or function.proj file. The newest version of the runtime uses function.proj.

<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
    <TargetFramework>netstandard2.0</TargetFramework>
  </PropertyGroup>
 
  <ItemGroup>
    <PackageReference Include="Cryptolens.Licensing" Version="4.0.9.2"/>
  </ItemGroup>
 
</Project> 

In case you get any issues with namespaces not being found, it can be useful to try to re-create the function entirely.

Accessing form client side

In order to access your method through the client application, we can use RestSharp or similar library. When you click on “Get function url”, you will get a string similar to “https://<cluster-name>.azurewebsites.net/api/HttpTriggerCSharp1?live=<secret key>”. The live parameter may not be present for some access levels

var client = new RestClient("https://<cluster-name>.azurewebsites.net/api/");
var request = new RestRequest("HttpTriggerCSharp1", Method.GET);
//request.AddParameter("code", "<secret key>"); // depending on access level of the function in Azure

// for licensing
request.AddParameter("licensekey", "AAAA-BBBB-CCCC-DDDD");
request.AddParameter("machinecode", Helpers.GetMachineCode());

// parameter to our function
request.AddParameter("name", "Bob");

var result = client.Get(request);

Console.WriteLine(result.Content);

Console.ReadLine();

If all worked out correctly, we should see “Hello, Bob” in the terminal.

Privacy

The best advice when it comes to privacy is to send as little personal identifiable information as possible. Always ask yourself what data really needs to be processed externally. Even if it is not always possible to make it entirely anonymous, it’s good to strive to at least pseudo-anonymize data (i.e. associate an id to each user instead of using their real name). In some cases, such as with IP address, you can remove the last digits, eg. from 10.1.1.5 to 10.1.1.0 without affecting the geographical data of the IP. For advanced users, you might want to look into homomorphic encryption and follow the recent research.


Not a customer yet? Sign Up for a free trial and implement our software licensing system within minutes.